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ABSTRACT
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solutions are explicitly constructed. It is shown that repetitive application
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CONSTRUCTION OF SOLITARY WAVE SOLUTIONS OF THE
KORTEWEG-DE-VRIES EQUATION VIA PAINLEVE ANALYSIS

W. Hereman, P. P. Banerjee and D. Faker

1. Introduction

Over the last five years, Painleve analysis of ordinary (ODEs) and partial

differential equations (PDEs) has been successfully applied to get an idea

whether or not the given equation or system -of equations might be

integrable. In essence the Painleve test verifies if the solutions of the

differential equations are free of movable critical points; in other words,

the only movable (i.e., dependent on the initial conditions) singularities

should be poles.

With reference to systems of nonlinear coupled ODEs, the Painleve test

provides insight into the possibility of constructing invariants (first

integrals) and their nature. Direct application of the Painleve test at the

PDE level provides an algorithm to construct the infinite set of conserved

quantities. Furthermore, Painleve analysis serves as an elegant tool to

construct the Lax pair, and thus allows to linearize and subsequently scive the

PDE by the Inverse Scattering Transform (IST). Painleve analysis also leads to

non-standard auto-Backlund transformations by suitable truncation of the

Laurent expansion of the solution. For ample references on those aspects the

reader should consult the papers of Weiss (1983-1987).

In this paper we will focus on yet another spin-off of the Painleve

analysis of PDEs. More precisely, we will investigate if the Painleve test

helps to construct a hierarchy of solitary wave solutions to the Korteweg-de

Vries (KdV) equation, which is the ubiquitous equation in soliton theory.

Indeed, Painleve analysis leads in a natural way to the classical (regular and

singular' :cslitary wave solutions. Unfortunately, the Painleve approach does

not permit to go beyond the known closed form traveling wave solutions

to the KdV. Although the associated Painleve-Backlund (PB) equations are



invariant under two distinct classes of Schlesinger transformations, the

application of the latter does not lead to new results. For instance, the

Mobius transformation maps solutions of the PB equations to solutions to the

same equations but with different values of the parameters. Within the Mobius

group we only find closed form solutions to the KdV which are disguises of the

well-known sech 2 and cosech2 solutions. Application of the Schlesinger

transformations to rational solutions is much more fruitful. For the KdV and

many other equations an infinite family of rational solutions can be

constructed in this way. This topic, which is extensively discussed and

referenced by Weiss (1983-1987) is outside the scope of this paper.

The paper is organized as follows: In Section 2, we briefly review the

basics of Painleve analysis and derive the PB equations for the KdV, which

serves as our paradigm throughout the paper. We then discuss in quite some

detail the properties of the invariant quantities (such as the Schwarzian

derivative) occuring in the PB equations. The most important result is that

these quantities themselves either satisfy the KdV or the modified Korteweg-

de Vries (MKdV) equation.

Next, in Section 3, starting from the PB equations, we construct the

explicit (closed form) traveling wave solutions to the KdV. The validity and

also the limitations of this technique are rigorously proved in a couple of

theorcmq. The method is illustrated in an example.

In Section 4, we turn to a study of the various connections of the

Painleve approach with other well established methods. We start with Hirota's

formalism, which leads Lo N solitary wave solutlons whereas the Painleve

technique apparently does not. Second, we compare with the Lax method

which allows us to linearize the KdV. It is shown how the Schrodinger equation

and the evolution equation for the eigenfunctions follow from the PB equations



by the balance of nonlinearity and dispersion (or dissipation) in the given

PDE. For particular values of j, which are called the resonances and are

denoted by r, it will be possible to take u (x,t) arbitrary provided ther

remaining terms in the recursion relation vanish (compatibility condition).

More details on the Painleve test, including the results for various PDEs, may

be found in papers by Weiss (1983-1987), Gibbon et al (1985), and

Hereman and Van den Bulck (1988). The latter contains a MACSYMA program that

symbolically performs all the required steps for the P-test for a given ODE or

PDE.

Whether or not the Painleve test allows us to draw strong conclusions

about the integrability (in the context of IST) of a given nonlinear PDE

remains debatable. As a matter of fact there are counterexamples available

(Gibbon et al 1985, Clarkson 1985, 1986, Fokas 1987) disproving the necessity

and sufficiency of the Painleve property to guarantee complete integrability of

PDEs. We stress that integrability, by no means, refers to the possibility of

constructing particular analytical solutions of PDEs, which we will explore in

this paper. To say the least, Painleve analysis serves as a handy tool to

investigate the existence of solitary wave solutions of nonlinear evolution and

wave equations, which may then be constructed by any existing direct method

(for a review see Hereman et al 1986). More interesting to us is the

derivation of auto-Backlund transformations via a truncation of (1) and the

subsequsnt construction of the Lax pair (Lax 1968) for the PDE. A truncation

of the Laurent series is possible provided the coefficient of the constant

level term is a solution to the original equation. Furthermore, the fvnction

must satisfy a set of PB equations. These equations are quite easy to solve,

specially since they are transformable into an equivalent set which is

invariant under the (Mobius) group of homographic (Schlesinger)

transformations.



as well. Finally, since a non-standard auto-Backlund transformation is

obtained by truncation of the Laurent expansion, a comparison with the

classical Backlund transformation method seemed in place.

The methods presented in this paper carry over to a large class of

completely integrable evolution and wave equations. As a matter of fact, a

study of the Kuramoto-Shivashinsky (KS) equation along the same line of

thought is presented in a paper by Conte and Musette (1988a) in volume I of

these Proceedings.

2. Painleve Analysis

Weiss et al (1983) proposed a direct procedure to test whether or not a

partial differential equation is of the Painleve type (P-type), i.e., its

solutions admit only poles as movable singularities. The test requires the

substitution of a Laurent expansion for the solution of the PDE in terms of a

new dependent variable 0, say

N 00
u(x,t) = * (x,t) j 0 u (x ' lt) (x't), (1)

and subsequent verification if the recursion relation for the coefficients

u.(x,t) has self-consistent solutions in terms of the time and spatial

derivatives of *. We require O(x,t) to be analytic in some neighborhood of the

singular manifold (O(x,t)=O), which itself is supposed to be non-

characteristic (0x 0t * 0). The exponent N of the singularity is determined

x tm



Consider the KdV equation in u(x,t):

u t+uu + 8u = 0, (2)ut x 3

where the (rescalable) real coefficients a and 8 are left in for easy

comparison with the literature. By now it is well-known (Weiss et al 1983,

Weiss 1983, 1984a) that (2) passes the P-test and that the expansion (1) (with

N = -2) can be truncated at the constant level term u2, to give

u(x,t) = - -0- + u2(x,t)

(X 2 2x 2

12) (3)
aE 2x +2

provided u2 itself is a solution of (2), and 0 satisfies two PB equations

simultaneously. An easy way to rederive these equations is as follows.

Subtract the KdV in u2 from (2); this gives

(u-u)+ [(u-u ) 2 + (u-u ) +5(u-u) =0 (4)
2 t 2 2 2 2 x 23x

Next, substitute u-u2 from (3) into (4) and integrate once with respect to x.

Setting the coefficients in 0- and 0-2 equal to zero results in

0 xt + au 202x + 804x = 0, (5)

* 0 + au2 2 + 4S4 3 - 38 02 = .(6)

The coefficients of *-3 and 4 vanish identically.

Upon elimination of u2 between (5) and (6) and subsequent integration

with respect to x, one obtains

C + 8S = X(t) (7)



where the integration constant X may still depend on t, and where (Conte and

Musette 1988a)

4,t
C = (8)

x

and where

x- - (9)

denotes the Schwarzian derivative (Hille 1976). Apart from the basic ratios C

and S, which, as is easy to show, are both invariant under the (Mobius) group

of real fractional linear transformations,

c a + bd ' ad-bc * 0, (10)

there is a third ratio

02x (11)

Ox

which is not invariant under (10), but nevertheless plays a crucial role, as we

will see later on. Indeed, from (6), u2 may be expressed as

1 2

u - 1 (C + 48S + 38E 2). (12)

Using (8) and (9), one first calculates

12
E S + E , (13)

x 12

E =C + EC + CS+ E 2  (14)
t 2x x 2

and later on expresses the relevant derivatives of u2 in terms of C, S, their

derivatives and E. Straightforward algebra reveals

(u2) = I (C + 4SS - 68 2ES - 68 2ES
2 a( t t 2x

+ 68ESC + 38E3 C), (15)



(u) = - (S + 2ES 2 + E ) (16)

38 2 3

(u) = - 3- (S + 6SS + 8 ES2 + 10E3 S
2 3x a 3x x

+ 5E2Sx + 2ES2x + 3E5)  (17)

where we have used (7) to eliminate the spatial derivatives of C in favor

of those of S.

Combination of (15), (16) and (17) according the KdV equation (2) gives,

after simplification,

C + 58S - 65SC - 58CS - CC + 482 S + 28 2SS = 0 (18)Ct x x x S3x x

or equivalently with (7),

S - XS + 35SS +8S - - t  (19)
t x x 3x 48

Since C and S are dependent through O, the compatibility condition *t,3x

3x,t implies the constraint

St - C3x -2SCx -CSx =0. (20)

Using (7) once again, one thus obtains

St - XSx + 38SSx + 8S = 0 (21)

KdV equation. This remarkable result is due to Weiss (1984a, 1986b) and was

rediscovered by Conte and Musette (1988b), who brought it to our attention.

Since (20) was derived independently of (5), (6) and (7) it is clear from

comparison of (19) and (21) that X = 0. This observation allows us tot

conclude that for constant X, the requirement that u2 satisfies the KdV is

equivalent to a compatibility condition in terms of the function *. After all,

this should not surprise us since our non-standard derivation of the Painleve-



Backlund equations (5) and (6) was contingent upon u2 solving (2). It now

suffices to solve (7), with constant X. Even this can be slightly simplified by

realizing that (7) is Galilean invariant: If *(x,t;k) denotes the solution for

arbitrary X, then *(x,t;O) - O(x-Xt,t;X). Next, (5) needs to be solved for u2.

Then, substitution of 0 and u2 into (3) leads, at least in principle, to a new

solution u to the KdV. At this point, one might wonder if C and E satify any

particular well-known equations. From (7) it follows that

Ct + 2XSx - 3CCx + 8C3x = 0. (22)

The equation for E can be drived as follows. From (7) we calculate

C2x Et -(EC) x  (23)

using the compatibility condition 1t,2x = .2x,t" Since C can be expressed in

terms of S by (7), and S relates to E by (13), we obtain from (23),

3 2

E -E -- 6E2E + 8E 0( (24)
t x 2 x 3x 0

which is the modified KdV (mKdV), a result also due to Weiss (1986b).

3. Solitary Wave Solutions Constructed from the Painleve-Backlund Equations

In our search for closed form solutions to the KdV equations we adhere

to the following strategy:

(i) Starting from a traveling wave solution 0 in real exponential form, we

calculate the dispersion law from (7); X enters a free constant

parameter;

(ii) Next, we obtain u2 from (5);

(iii) Substituting 4 and u2 into (3), we find u;

(iv) Subsequently applying the Mobius transformation (10) we obtain a

new 0 and repeat the above steps.



b (ad-bc) _ab-
d d c+d"

Theorem 2

Starting from

* = exp(kx - C(t + 0) e (28)

with 60 constant, application of the Mobius transformation

a+b' (29)
- c+d(

will not lead to a more general solution to the KdV than the one obtained from

the special case c = 1, d = 0, a and b arbitrary.

Proof

Since C and S are invariant under the Mobius group (29) one can evaluate these

for 0 as in (28). With (7) we have

1 2
C = - + + 1  k(0

k 2 (30)

12
S -- - lk (31)

As seen from (12), only E needs to be evaluated to find u2. Under the Mobius

transformation

E = k (c-de (32)(c+de)

which, remarkably enough, no longer depends on a and b. From (12), obviously

= + k 828 [tn(c+de H 33u2 - 2 Ok2 +-([n]2x "(3

Analogously, from (3),

U 1 (X + 3 8k 2 ) + 128 [tn(a+be)0 ]H (34)
CE 2 a2



This procedure, although beautiful in theory, is of limited practical use, as

will be shown in the next theorems and the subsequent example.

Theorem 1

Suppose u and u2 are solutions to the KdV equation (2) for which the

difference is expressible in terms of the second logarithmic derivative of a

singular manifold o, which is lii:'ed to u2 by the PB equations (5) and (6).

Then a - a + b will satisfy the PB equations (5) and (6) provided we replace
c + d

u2 by u.

Proof

We will first show the result for the special case

1 .(25)

Regarding the desired result, suppose that W satisfies

'Vxt + 'v2 2x + 84 x =0. (26)

From (25) we convert all the needed derivatives of W into derivatives of t,

and we substitute into (26). Using (5) and (6) we eliminate the t derivatives

of 0, elegantly introducing u2 into the expression. Finally, we calculate v2

as

2

v2 = u2 + 12 2x X u. (27)

Remark that (5) and (6) are invariant for scaling of 0 and addition of a

constant to it (0 -# c + do), likewise (26) is invariant upon replacing 41 by

+ 5W. Hence, starting from c + do we apply the first part of the theorem to

W4- 1/(c+do) and construct



It is apparent that (33) and (34) are structurally the same. From Theorem

1 it follows that any further application of Mobius transformations would not

lead to anything more general than (34), which itself follows from (29) for the

simplifying choice c - 1, d = 0. Observe that, apart from a constant, u2 and u

in (33) and (34), have the same "singular part" as u in (3). This peculiar

result is not unique for the KdV. Even evolution equations such as the

Kuramoto- Sivashinsky (KS) equation, which does not pass the P-test in the

strict sense (due to the presence of complex conjugate resonances) exhibits the

same behavior. Conte and Musette (1988a) have shown similar results for the KS

equation, which greatly inspired us to prove theorems 1 and 2 for the famous

KdV case.

Example

Let us start from 4 in (28) and calculate u according to the first three

steps outlined in the beginning of this section. The dispersion law follows

from (30):

= -(X + k2 )k . (35)

From either (5) or (6) one obtains

S(X + 8k 2). (36)

For the present choice of 0, the singular part in (3) vanishes, so that u = u2 .

We now carry out the calculations for

a + be (37)

which results from a special Mobius transformation on e , hence X and ( (see

(35)) remain the same. Following the notation of the proof of Theorem 1,

1 3(2

v - u u2 = - 1 (X + - 8k 2). (38)
2. 2 I 2



Denoting the solution corresponding to IV by v, we obtain

128
v - - (EnW) 2x + v2

S125k2abe l + 1 3

a(a+be 
) 2  2 2

b
This solution depends only on the free parameters X, k and O0, the ratio Il

being absorbed in 00. For a=0 one obtains the trivial constant solution to the

KdV equation. For b > 0 we retrieve
a

V = -5 sech 2-k[x + (x + I 8k 2)t + LO
k 2 2 k

1 3 2

(x + 5k 2 ) (40)
at 2

b
with - = exp 0

a 0"

b2 2
For b < 0, the sech in (40) is replaced by -cosech2 , the singular solution

a

to the KdV equation.

Let us conclude this section by pointing out that an equivalent result can be

obtained by starting from

= A + B tanh (41)

where A and B depend in a suitable way on a,b,c and d in the Mobius group

a+b c+d b
(29), where only the parmeters -- and C- are relevant (d can be

b d d

scaled out). Calculations along similar lines as before produce an elegant,

though equivalent, representation of the regular (and singular) traveling wave

solution of (2):

38k 2  
2  B + A tanh 2

v=2-- A+ - a (42)

+ B tanh 0
2



1

Onc easily verifies that (39) and (42) are the same for A - 1(a+b),
1 32

B - -(b-a). For a graph such that 0 < v < I we selected a - -2% - for
2

which (42) reduces to

V(C) = (1-A 2 )sech 2  (43)
(1+A tanh )

k U 0
where A = B/A, C = k (x - t + ) which is symmetric with respect to r

-1 1
-tanh- A. Fig. 1 shows v(C) for A - For any A > 1 the solution is

22
singular (cosech2 - type). At this point one might wonder if it is possible to

construct N solitary wave solutions from the PB equations. The answer is no,

and this issue will be addressed in the next section.

It is however possible to construct an infinite class of rational

solutions to the KdV equation starting from (5) and (6), and by exploiting

invariance properties of the related equation (7) other than the Mobius group.

Remark that (7) is invariant under the reciprocal derivative
1

transformation Ox (Weiss 1984a, 1986a,b, 1987). Details on the construction
x

of rational solutions, which is out of the scope of this paper, may be found in

papers by Weiss (1984a, 1986b), Gibbon et al (1985) and references therein.

4. Connection with Other Methods

4.1 Hirota's method

Hirota (see, for instance, Ablowitz and Segur 1981, Matsuno 1984)

constructs the N solitary wave solution to the KdV equation (2) in a quite

ingeneous way. Hirota substitutes

122u = - (R£n f)2x (4

into (2), hence reducing it to a quadratic equation in f(x,t):

2 2ff - f f + 8ff -48ff3x + 38f 2  Gf (45)fxt x x xx 2



which in turn can be written in bilinear form as

(D D + 8 D 4) fef - Gf , (46)
X t x

using the bilinear operator (Newell 1985)

tim
Dx fog - 0 5y f(x+y)g(x-y) (47)

where y plays the role of an auxiliary variable. Similar formulae hold for Dt

and products (powers) of D and Dr. Setting the integration constant G in

(46) equal to zero, the N solitary wave solution is then obtained as follows.

Upon substitution of a formal expansion for f, say

i0 (iW
f = 1 + i 1  F (x,t) (48)

into (46) and equating the coefficients of the bookkeeping parameter E order

(i)
by order, one arrives at a perturbation scheme for the subsequent F

Starting from a sum of N real exponentials

() N N
F exp (k.x - W.t + 0,) = e (49)j 3 3 j=l

(N+I) (N+2)
the expansion (48) can be broken off exactly at level N (i.e. F = F

= 0). Calculation of the RHS of (44) gives the explicit form of u(x,t).

As an example, the two solitary wave solution, which we will denote

(2)
by u (x,t), is obtained by taking N=2 in (49), which will satisfy

the first equation in tt, perturbation scheme provided (a. = 8k3 (dispersion
I J (2)

law). After some tedious algebra involving the calculation of F and

subsequent substitutions of the results in (48) and (44), one gets

28

(2) 38 2 2 (k 2 sech 2 - + 2 h2 2
u =- (k - k) 2 2  (50)S 2 1 81 02 2

(k I tanh 2 - k2 coth -)

-m mmmuu 2



2 _2 2 2
68 (k 2 - k 2 ) [(k 2  ki) + k 2 cosh 01 + k1 cosh02]IT-8 22

~ 2 1 1+02 01-02 2
[(k2-kl)csh( ) + (k2+k1 ) cosh(----)]

(51)

Moloney and Hodnett (1986) have shown that the 2 soliton solution can be

decomposed into two amplitude and phase modulated solitary waves. For

completeness we recall their results here:

(2) _38 2 2 1u - [k A(O ) sech - (0 + H(2))
(x 1 2 2 1 2

2 21
+ k2 A(0 ) sech

2 1 (0 + H(0 )), (52)
2 1 2 2 1

with amplitude and phase modulations

1 + Bie 1 + A1 2e 15A(0,.) - e.e(53)

1 (l+e i) (I+A1 2 eo i )

(1 + A 12 e (54)
H(I . = 1 + e i 5

with

A2 = ( + (55

and

2 2 2k B2 + k 2B = 2(k - k2 ) (56)12 k2B1 156)

The ambiguity in selecting BI , B2 can be resolved by requiring that the total

area under each of the pulses in (52) is preserved and constant.

Mathematically this implies that

B1 = -B 2  -2 [kl-k2  (57)

k1+k2



for which clearly (56) is satisfied. Motivated by the similarity in the

starting points (44) of Hirota's method and (3) for the Painleve approach, one

may search for underlying connections. More specifically, one may wonder

whether or not it is possible to construct multisoliton solutions from

Painleve-Backlund equations (5) and (6). Recall that these were derived by

setting the terms in negative powers of 4 independently equal to zero, whereas

for (45) there was no such restriction. Hence, multiplication of (5) with

and subtraction of (6) yields

00 - 0 0 +84 So 480 +350 2
xt x t 4x x 3x 2x

= -au2 2 (Ino)2x

= -au2(42x - 0 2 (58)

We can now see that Painleve-Backlund equations imply (45) for G=0

provided u2 = 0 and O is exponential in nature. For = a + b exp(kx - t + 0)

(58) is satisfied since (5) and (6) are with

u = I (-k. (59)
2 a k

For u2 = 0 we recover the dispersion law o = 8k
3 used in Hirota's method and f

and 0 coincide. In Hirota's formalism a two soliton solution is obtained with

01 e2 kl-k2 0 +e0
f = 1 1 + e 2 + (kl+k 2  e1 2 (60)

which surely satisfies (45) for G-0, but could never fulfill (5) and (6)

simultaneously for u2. Hence it appears impossible to construct multi-solitary

wave solutions from the PB equations for a truncated Laurent expansion. We

strongly believe that even the complete Laurent series (see Weiss et al 1983)

would fail to reconstruct (50).



As a final remark, it is possible to find simple solutions of (45) for G 0.

For instance, recalling that two functions f which differ by the exponential

exp ((x(t)x + P(t)), with arbitrary a(t) and P(t), will give rise to the same u

through (44),

f = cosh exp (-M2 (61)(21

with

k(x + Xt + - 8k2t) + 0

and
32

(X + k2 )

M ~ 22

246k 2

satisfies (45) provided

G = -(2-8k 2 ) (2% + 38k 2). (62)

The corresponding solitary wave solution is in (40), from which f in (61)

was obtained by two integrations according to the RHS of (44).

4.2 Lax method and Inverse Scattering Transform (IST)

The Lax pair for the KdV equations (Lax 1968) can be derived from the PB

equations (5), (6) and (7) in an easy way. First, we solve (6) for *t and

substitute this into (7), yielding

3 1'3x 1 2x + (Wu2 + X) = 0. (63)

x

Secondly, differentiation of 0t with respect to x allows to eliminate

Oxt between (5) and (6) resulting in

ii 3 2 3 - i8 0 0 + 3
x + 3x 4x - 66 2x 3x + 2x=0 (4



Next, following Weiss et al (1983), we substitute

x = V 2  (65)

into (63), to get the Schrodinger equation (first Lax equation)

68V2x + ( u2 + MV - 0. (66)
/

Substitution of (65) into (5) and (64) and elimination of the nonlinear term

VxV2x between the resulting equations gives the second Lax equation

V + cu V + !(u ) V + 48V 0. (67)
t 2Vx 2 2 x 3x

Defining the Lax operators

68 = a2"
+ au2 ,ER, (68)

ax 2

B - 4- + 2 (u + -x u) (69)ax 3  2 2 ax ax
we recast (66) and (67) into a compact form LV = AV with A = -/,

and Vt = BV. One can easily verify that the KdV equation (2) in u2 is

equivalent to

Lt = [B,L] = BL - LB. (70)

This result was first obtained by Weiss et al (1983), and Weiss (1983) in

two different ways, and the same procedures for obtaining Lax pairs apply for

a large variety of ODEs, systems of ODEs and PDEs. For the latest results we

refer to Newell et al (1987). From (65) the connection between the Painleve

function * and the eigenfunction V in the Schrodinger equation is clear.

- • m mlmllml in No"I



4.3 The Backlund transformation method

Once the Lax pair is available, it is rather straightforward to obtain

the Miura transformation and even the traditional Backlund transformation.

Indeed, if we introduce a new dependent variable r(x,t) by the Cole-Hopf

transformation (Newell 1985)

V a
r(x,t) -2 x (tn V) (71)

V ax

or, equivalently.

V = exp f r(s,t)ds,
V = xp J(72)

then the Schrodinger equation may be replaced by

68 (r + r(2  + = A, (73)a x2

which is known as a Miura transformation between the functions r and u2.

Since u2 satisfies the KdV it is reasonable to expect that r will satisfy the

modified KdV (mKdV). To show this we first rewrite the second Lax equation

entirely in terms of r and u2 :

-rt= 125r rx + 125 r2 + 128rr2 x

+ 48r + a(u ) r + W(u )r + 9(u (74)
3x 2 x 2 x 2 2 2x*(4

Subsequently, we eliminate u2 between (73) and (74), yielding

- 68r r + - r + r -0, (75)
tx J3 x 3x

which indeed is the mKdV. The traditional Backlund transformation now follows

from a simple, but clever argument. Observe that if r is a solution to (75),



(corresponding to u2 ) then -r is a solution as well (corresponding to u2,

another solution to the KdV),

and

683 (-r + r 2 + Pa2 = A. (76)

a x2

Subtracting (76) from (73) we obtain

a
r = 128 (q - q). (77)

where q. = u2, qx = 2' q and q being the potentials. Substituting the last

result back into (73), we get the classical Backlund transformation,

+ q)x - - l - )2 (78)

A similar, but more complicated relation for (4 - q) t, follows from (74),

or a slightly more symmetric form (75). Wahlquist and Estabrook (1973) have shown

that this evolution equation together with (78) then form a completely

integrable Phaffian system. Integrability being assured, it suffices to only

consider (78). Combining (71) and (77) we also have

128
a2 ax (Xn V) (79)

or

128 a 2 68 2x
u2 "2 a ax 2 (En V) x (80)

using (65).

Keep in mind here that u2 and 52 are not arbitrary and independent solutions

to the KdV. To be precise, u2 is related to r and Q2 to -r. From (71) it

then follows that u2 corresponds to V whereas Q2 corresponds to 1/V. Going

back to (65), u2 corresponds to * whereas u2 corresponds to r defined as

r -. (81)
x x



The Backlund transformation (80), which involves E = *2x /x as defined in

(11), suggests that (7), which only involves 4 and its partial derivatives, is

invariant for the change 4 -4 r. This result, which was first observed by

Weiss (1984a), is easy to verify by direct calculation. Using (81) in

combination with (80) gives

68 r2x
U 2 - u 2 = r 82)

x

Furthermore, under the change of the dependent variable in (81),

E 2x E r 2x (83)
E Ox r r x

c t C + 28(E (84)

1 2
S = (E ) - I(E ) = S - 2(EF~x , (85)
4) 0 x 2 4) r x

such that (7) remains invariant. The solution corresponding to 4, denoted by

u2 = (u2) will be transformed into 02 = (u according to (80) or (82).

Remark that in eqs. (83)-(85) and the discussion above the subscripts 0 and r

do not represent partial derivatives. For a further discussion of the

Backlund transformation (78) we refer to Wahlquist and Estabrook (1973).

5. Conclusion

Painleve analysis of the KdV leads to a non-standard Backlund

transformation involving a (singular) manifold 4 which has to satisfy

simultaneously two partial differential equations in which the other solution

u2 to the KdV occurs as a coefficient. Upon elimination of the latter

(i.e. u2), one obtains a partial differential in 4 which has two terms, the ratio

t /0x and the Schwarzian in 0, that are invariant under the Mobius group and a
t xIi



reciprocal derivative transformation. These invariances allow us to construct a

hierarchy of new solutions, at least if the initial * is rational. For 0 of

exponential form it is impossible to go higher than one rung on the ladder:

the Mobius group remains invariant up to a trivial change of constants. The

meaning of the function 0 is illuminated through the connections of the

Painleve analysis with Hirota's perturbation method, the Lax method, the

Inverse Scattering Technique and the standard Backlund tansformation method.
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